
车载总线EBooK

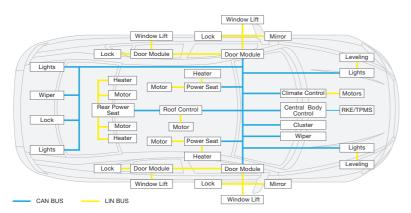
LIN、SENT、FlexRay总线

目录 Directory

前言	02
LIN总线	03
LIN总线简介及特点	
LIN总线布网组局	
LIN总线物理结构	
LIN总线数据帧结构	
横河示波器器进行LIN总线解码的优势	
横河示波记录仪进行LIN总线监视的功能	
SENT总线	09
SENT总线简介及特点	
SENT总线物理结构	
SENT总线数据帧结构	
横河示波器进行SENT总线解码的优势	
横河示波记录仪进行SENT总线监视的功能	
FlexRay总线	16
FlexRay总线简介及特点	
FlexRay总线拓扑结构及通讯协议	
FlexRay总线物理层结构	
FlexRay总线数据帧结构	

制和车门智能传感器控制等。

Preface 前言


随着汽车产业蓬勃发展,出于对安全性、舒适性、方便性、低公害、低成本的需求,各汽车厂商研发了各种各样的电子控制系统,越来越多的电子控制单元 (ECU) 被引入到汽车中。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,为了使这些ECU能够在共同的环境下协调工作,工程师们设计了针对汽车通信网络的多种串行总线协议。比如CAN协议主要用于车身控制系统和传动装置,SENT协议主要用于油门踏板等子系统,FlexRay协议可用于安全性很高的刹车和导向系统,因为它们符合通信的高容错性、高可靠性和高实时性要求,LIN协议用于只需要简单串行通信ECU的低端控制系统,如后视镜控

本期资料介绍几种常用车载串行总线及横河YOKOGAWA测试仪器对这些串行总线的测试案例,车载CAN总线测试另见横河往期EBOOK。

LIN (Local Interconnect Network) 总线是基于UART/SCI (通用异步收发器/串行接口) 的低成本串行通讯协议。其目标定位于车身网络模块节点间的低端通信,主要用于智能传感器和执行器的串行通信,而这些功能正是CAN总线的带宽和功能所不需求的部分。LIN总线是面向汽车低端分布式应用的低成本,低速串行通信总线,属于局部互联网,是SAE规范的汽车A类网络。

在汽车的应用上,比如车身电子配件(车窗、后视镜、大灯、车锁等),不需要报文像CAN总线上那样的"高速" 传输,可以使用LIN总线,从而降低整车的总线架构成本。

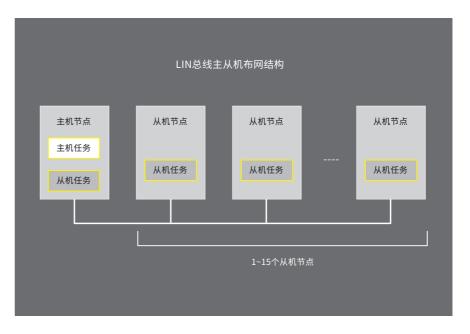
LIN Bus Introduction LIN总线简介

LIN总线的特点

- 网络由一个主节点与若干个从节点构成;
- 使用LIN总线可以大幅度削减成本 (CAN和LIN都需要收发器, 但是LIN属于单线制, 节省线束);
- 传输具有确定性,传播时间可以提前计算;
- LIN具有可预测的EMC(电磁兼容性)性能,为了限制EMC的强度,LIN协议规定最大传输速率为20kbps;
- LIN总线提供信号的配置、处理、识别和诊断功能;

LIN总线布网组局

LIN的通信包括主机、从机两部分。单线通信速度为20kbps。一个主机可以同时与最多15个从机通信。物理层采用单线连接,两个电控单元间的最大传输距离为40m,其总线驱动器和接收器的规范遵从改进的IS09141单线标准。

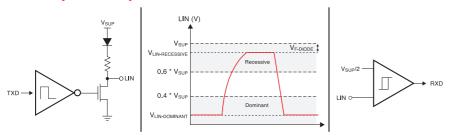

主机节点任务:

- 调度总线上帧的传输次序;
- 监测数据,处理错误;
- 作为标准时钟参考;
- 接收从机节点发出的总线唤醒命令;

从机节点任务:

不能直接向总线发送数据,需要接受到主节点发送的帧头后,根据帧头所包含的信息来判断:

- 发送应答;
- 接收应答;
- 既不接收也不应答;



LIN总线物理结构

LIN总线最核心硬件:芯片,包含了最主要的两部分:serial network protocol controller(串行网络协议控制器)和 physical layer transceiver(物理层收发器)。

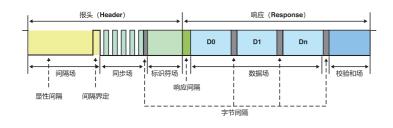
- 串行网络协议控制器:用于同步、逻辑控制、错误检测等;
- 物理层收发器:主要用于在收发时候LIN协议逻辑电平和模拟电平之间的转换。逻辑电平转换为模拟电平之后,和CAN总线一样,分为隐形和显性(定义如下图);

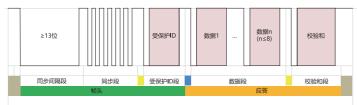
LIN Physical Layer

LIN总线物理层

LIN总线融合了I2C和RS232的特性:

- 像I2C总线那样,LIN总线通过一个电阻上拉到高电平,而每一个节点又都可以通过集电极 开路驱动器将总线电压拉低;
- 像RS232那样通过起始位和停止位标识出每一个字节、每一位在时钟上异步传输;

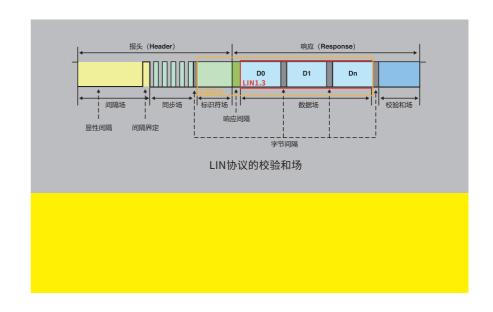



LIN总线数据帧结构

LIN报文帧包括帧头(hearder)与应答(response)两部分。主机负责发送至帧头,从机负责接收帧头并作出解析,然后决定是发送应答,还是接收应答或不回复。

LIN总线的一帧主要由两部分组成,报文头(Header)和报文响应(Response)。具体内容如下:

- 报文头包含同步间隙、同步域和报文标识符场(0~63);
- 响应报文由1-9个字节构成:其中2、4或8个字节的数据场和1个校验和场(LIN1.3);
- 报文帧之间有帧间间隔分隔;
- 报文与响应之间有帧内响应空间分隔;
- 最小帧间间隔和帧内响应空间均为0;
- 最大长度受到报文帧的最大长度FRAME_max限制;



LIN协议数据帧结构

LIN2.0和LIN1.3的主要差异

- 支持最多8个字节的数据序列;
- 取消了受保护标识符中的数据长度字段,即传输长度不再受限于ID,并将最后一个字 节视为校验和:
- 校验和的验算包括了受保护标识符;
- 支持自动波特率检测功能;
- 对零星帧进行了定义;
- 网络管理的定时用秒来定义,而不是用比特数来定义;

LIN总线协议解码

横河YOKOGAWA DLM系列示波器进行LIN协议解码特点:

- LIN总线自动设置触发快速检测和显示解码数据;
- 实时硬件解码;
- 支持多种触发模式设置;
- 独立的双缩放窗口,用于显示模拟波形和LIN总线波形;
- 内存深度最高可达500MPt,实现长时间的总线数据采集;
- 缩放搜索功能可查找指定的数据或错误帧;
- 可将解码后的数据以CSV文件格式存储到PC或内部存储器;
- 适用LIN Rev. 1.3、2.0、2.1协议版本;

LIN总线监视功能

LIN总线-应用 LIN总线监测功能

横河DL950+LIN可以实现监视模块:

● 每个端口最多60个信号的趋势监视器(横河DL950);

分析LIN的数据趋势,横河YOKOGAWA推出了相应的解决方案。

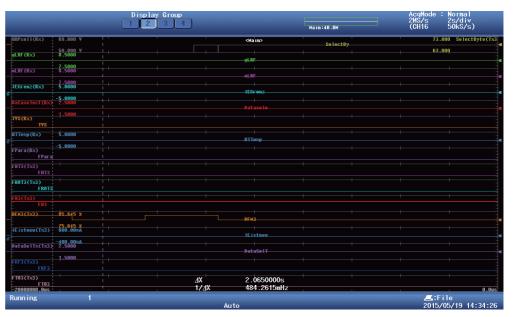
● 同时模拟量波形监测对比;

LIN电源电压输入范围:7V-18V;

支持协议:物理层 ISO-9141;

支持的比特率:2400/9600/19200bps;

支持的数据长度:最大4字节;


支持的数据场校验:标准校验和扩展校验;

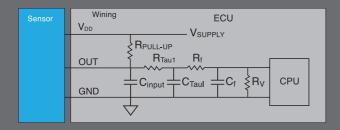
应用案例:

汽车发电机控制器的研发过程中,使用LIN总线作为控制信号,需要监控LIN总线的数据流并且将物理量趋势图显示出来。

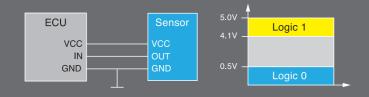
横河DL950示波记录仪的LIN总线监视图

SENT的全称为: Single Edge Nibble Transmission, 是一种点对点、单向传输方案协议,此协议简单且具有很多优势,被广泛使用在汽车中传感器和电子控制单元(ECU)之间传输高清传感器数据。

SENT在信号开始时提供一个参考校准脉冲,在结尾提供一个检验位。报文的长度随着半字节值的变化而不同。


SENT(SAE J2716) 为汽车传感器新型接口标准,较模拟输出和PWM 输出相比,具有很好的EMC特性,可作为节省线束、节省插针接头的低成本方案。另外,它还能传输故障代码,让传感器系统具有很强的故障诊断能力。车载传感器数量的增加和对测量精度要求的提升,市场需要一个更便捷、可靠、经济的车载数据通讯解决方案,通用公司(GE)依据这种需求,率先制定了SENT标准,后来成为了SAE J2716标准。很快其他公司在动力系统中便采用了该标准,包括废气再循环、进气歧管执行器、柴油节气门及drive-by-wire油门踏板部件等子系统。

SENT将来会在局部系统中广泛取代CAN和LIN。

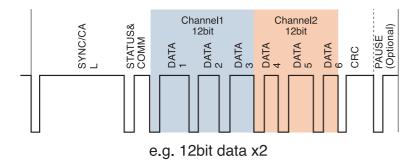

SENT Bus Introduction SENT总线简介

SENT总线的拓扑结构、物理连接及特征

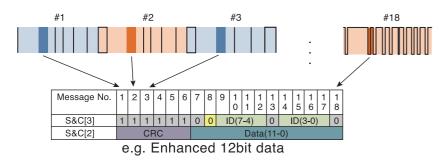
拓扑结构

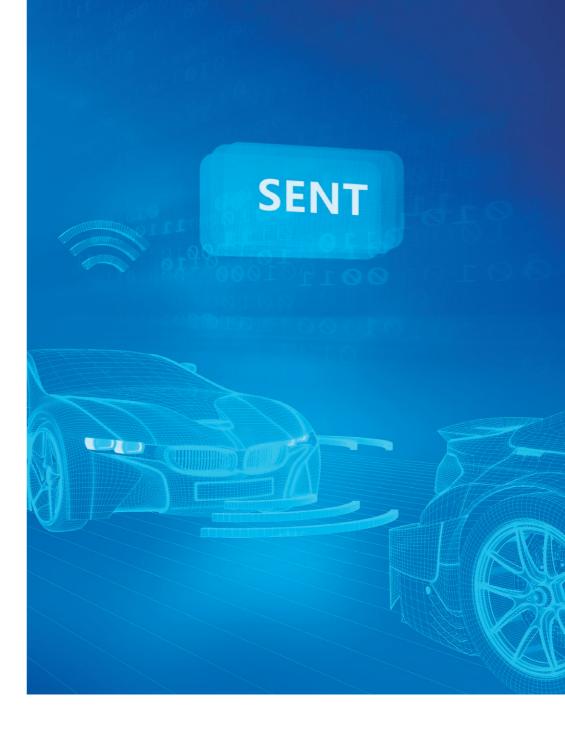
SENT总线的硬件连接和逻辑电平图

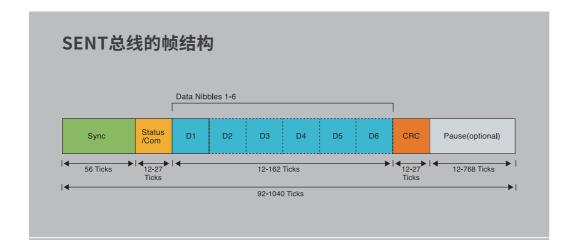
SENT总线-特征


- SENT 总线是一种数字信号传输协议,具有非常高的传输精度和速度;
- SENT 总线是单线传输数据,不仅减少信号线,而且还能降低成本。加上电源和地线,总共3线;
- SENT 总线具有更强大的诊断功能;
- SENT 总线逻辑电平的高低信号的电平要求:0~0.5V为逻辑电平0,4.1~5V 为逻辑电平1;
- SENT 总线单向传输协议,数据只能从传感器到 ECU,传输是连续的,不需要请求命令;
- SENT 总线由帧来传输数据,或者以数据包的形式传输,而每一帧由不同宽度的脉冲即半字节组成:
- SENT 总线数据的传输可以分为快速通道和慢速通道,重要的信号用快速通道以实现高频率的更新,比如压力等,对于非关键的信号,如诊断等可以放在慢速通道传输;
- SENT 总线快速通道是每一帧传输一个完整的信号,慢速通道需要多帧来传输一个完整的信号, 即更新频率不同;

SENT总线的结构


快速通道

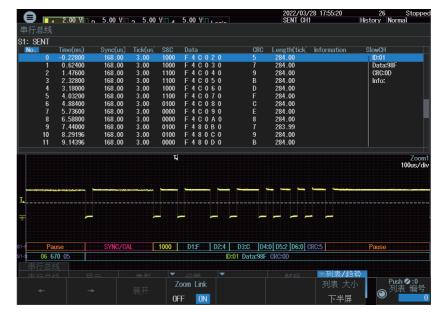

最多可发送6位(24位)数据。 值对应于脉宽:0:12tick~15:27ticks。


慢速通道(串行信息)

将不同的快速通道帧状态和通信字段中的第2位和第3位组合起来构成数据。适用于传输变化缓慢或错误信息的数据。数据有3种长度(8/12/16位)。

SENT 总线的帧结构基本组成:

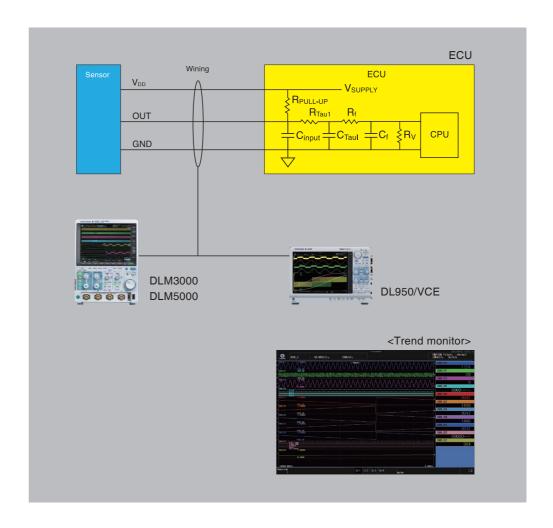
- 1、Sync 同步脉冲,固定的 56Ticks;
- 2、Status/Com 状态及通讯字段,12~27Ticks,即1个Nibble(4bit);
- 3、Data 数据段,12~162Ticks,即1~6个Nibble;
- 4、CRC 校验字段,12~27Ticks,即1个 Nibble;
- 5、Pause 暂停脉冲,12~768Ticks,早期的SENT协议无此字段或者一个固定长度 Ticks,
- SENT2010之后,部分通过此功能可以动态调节TICKS的个数,实现整个SENT协议是同一个固定长度TICKS;



横河YOKOGAWA DLM系列示波器进行SENT协议解码特点:

- SENT自动设置触发,快速检测和显示解码数据;
- 实时并同时显示快速和慢速通道的解码;
- 包括模拟、逻辑和SENT特定触发条件的全面触发功能;
- 独立的双缩放窗口,用于显示模拟波形、SENT波形和解码数据;
- 深度内存最高可达500MPt,即使时钟周期为3µs,也可采集200s的数据;
- 可将信息帧解码为半字节或用户定义格式;
- 缩放搜索功能可查找指定的数据或错误帧;
- 可将解码后的数据以CSV文件格式存储到PC或内部存储器;
- 支持2010以上版本;

横河DLM3054示波器sent总线解码图、列表和波形可同时显示

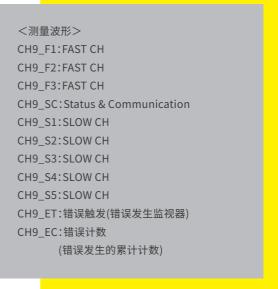

SENT总线的应用

SENT总线监测功能

为了应对更多的数据趋势分析,横河YOKOGAWA推出了自己的解决方案。

使用横河DL950/VCE选件+SENT监视模块,可以实现:

- 每个端口最多11个数据的趋势监视器(DL950/VCE选件);
 - 快速通道(3CH),S&C,慢速通道(5CH),错误;
 - 错误计数(错误发生的累计计数);
- 同时进行模拟量波形监测对比;
- 每个模块2个端口,一台横河 DL950最多可装配8个端口;
- 同时评价多个通信系统;
- 有助于提高开发效率;



横河YOKOGAWA示波记录仪SENT总线监测应用:

在整车厂电力电子研发过程中,需要测试汽车油门踏板的角度信号,该信号为SENT总线信号,角度信息为nibble1、nibble2、nibble3组合而成,研发客户主要需要得到MSN、MidSN、LSN这三个参数,再进行加减运算(如:256*MSN+MidSN-16+LSN)即可得到角度变化曲线。这其中需要用到横河DL950的SENT模块监测及实时运算功能。

横河DL950示波记录器sent总线监测图

如上述及左图所示,每个端口最多可监视11个数据的趋势。

FlexRay Bus Introduction FlexRay总线简介

随着汽车控制技术智能化发展,智能网联汽车、无人驾驶汽车的兴起,车载控制元件也不断增加。通过CAN总线、LIN总线实现联网的方式接收、发送并处理大量的数据已经难以满足需求,而传输速率更高、容错功能更强、拓扑选择更全面、同时具备事件触发和时间触发的新型数据总线—FlexRay总线应运而生。

FlexRay总线是由宝马、飞利浦、飞思卡尔和博世等公司共同制定的一种新型通信标准,专为车内联网而设计,采用基于时间的触发机制,具有高带宽、容错性能佳等特点,在实时性、可靠性和灵活性方面具有很强的优势。

FlexRay具有高速、可靠及安全的特点,FlexRay在物理上通过两条分开的总线通信,每一条的数据速率是10MBit/s。FlexRay还能够提供很多网络所不具有的可靠性特点。尤其是FlexRay具备的冗余通信能力可实现通过硬件完全复制网络配置,并进行进度监测。FlexRay同时提供灵活的配置,可支持各种拓扑,如总线、星型和混合拓扑。FlexRay本身不能确保系统安全,但它具备大量功能,可以支持以安全为导向的系统(如线控系统)的设计。

FlexRay总线特点

高传输速率:

FlexRay的每个信道具有10Mbps带宽。由于它不仅可以像 CAN和LIN网络这样的单信道系统一般运行,还可以作为一个双信道系统运行,因此可以达到 20Mbps的最大传输速率,是当前 CAN最高运行速率的20倍。

同步时基:

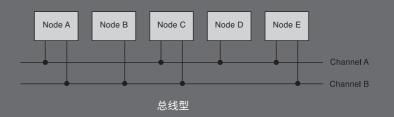
FlexRay中使用的访问方法是基于同步时基的。该时基通过协议自动建立和同步,并提供给应用。时基的精确度介于0.5µs和10µs之间(通常为1~2µs)。

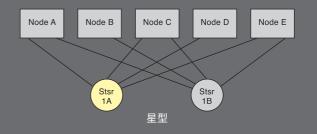
确定性:

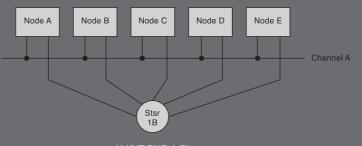
通信是在不断循环的周期中进行的,特定消息在通信周期中拥有固定位置,因此接收器已经提前知道了消息到达的时间。到达时间的临时偏差幅度会非常小,并能得到保证。

高容错:

强大的错误检测性能和容错功能是FlexRay设计时考虑的重要方面。FlexRay总线使用循环冗余校验CRC (Cyclic redundancy cheek)来检验通信中的差错。FlexRay总线通过双通道通信,能够提供冗余功能,并且使用星型拓扑可完全解决容错问题。

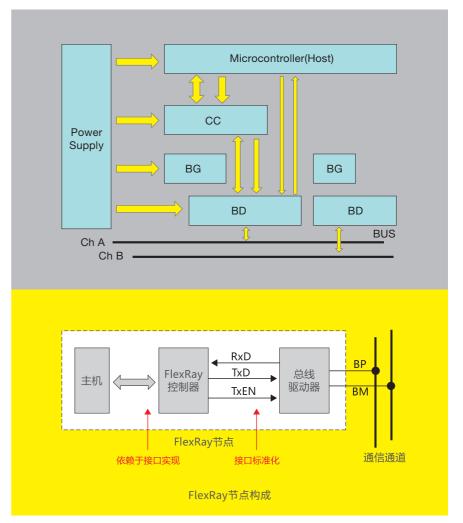

灵活性:


在FlexRay协议的开发过程中,关注的主要问题是灵活性,反映在如下几个方面:


- ①支持多种方式的网络拓扑结构;
- ②消息长度可配置:可根据实际控制应用需求,为其设定相应的数据载荷长度;
- ③使用双通道拓扑时,即可用以增加带宽,也可用于传输冗余的消息;
- ④周期内静态、动态消息传输部分的时间都可随具体应用而定。

FlexRay拓扑结构

FlexRay的拓扑主要分为3种:总线式、星型、总线星型混合型。


总线星型混合型

FlexRay节点构成

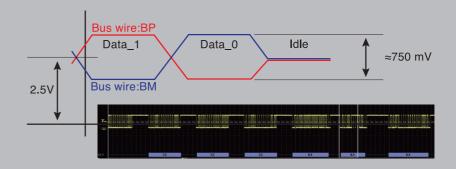
ECU (Electronic Control Unit),即节点node,是接入车载网络中的独立完成相应功能的控制单元。主要由电源供给系统 (Power Supply)、主处理器 (Host)、固化FlexRay 通信控制器 (Communication Controller)、可选的总线监控器 (Bus Guardian) 和总线驱动器 (Bus Driver)组成,如图所示。主处理器提供和产生数据,并通过 FlexRay 通信控制器传送出去。其中 BD和 BG的个数对应于通道数,与通讯控制器和微处理器相连。总线监控逻辑必须独立于其他的通讯控制器。总线驱动器连接着通信控制器和总线,或是连接总线监控器和总线。

FlexRay通讯协议和机制

FlexRay的网络通信协议主要包括:控制器主机接口、协议操作控制、数据帧与特征符处理、媒体接入控制、时钟同步、编码与解码处理。具体协议流程如右图所示:

FlexRay物理层

FlexRay 总线状态

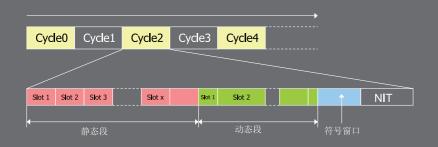

- 两种信号状态都是显性;
- Idle 是隐性;

Idle_LP: 低功率状态

Idle: 总线无通信状态

Data_1: 逻辑高

Data_0: 逻辑低


FlexRay通信周期

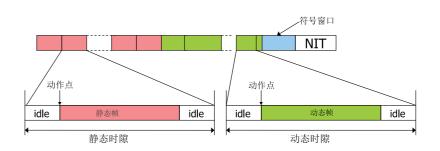
通信周期是一个基本过程。

通信周期计数在0-63之间重复工作。

它由同步的全局时基周期性触发。

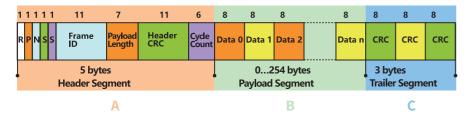
每个周期由静态段、动态段、符号窗口和网络空闲时间(NIT)组成。

时隙、空闲时间、帧、符号窗口和网络闲置时间


时隙是每个节点可以占用总线的时间段。

一个时隙是由空闲时间(逻辑"1")和帧组成。

每个静态时隙都有固定的长度。静态时隙的数量为2-1023。


动态时隙的长度是灵活的,并且使用迷你时隙构建。

一个周期内的最大时隙数为2047。

FlexRay数据帧

一个数据帧由头段 (Header Segment)、有效负载段 (Payload Segment) 和尾段 (Trailer Segment) 三部分组成。FlexRay 数据帧格式如图 所示。

A 头段共由5个字节(40位)组成,包括以下几位:

1、保留位(1位):为日后的扩展做准备;

2、负载段前言指示(1位):指明负载段的向量信息;

3、无效帧指示(1位):指明该帧是否为无效帧;

4、同步帧指示(1位):指明这是否为一个同步帧;

5、起始帧指示(1位):指明该帧是否为起始帧;

6、帧 ID(11位):用于识别该帧和该帧在时间触发帧中的优先级;

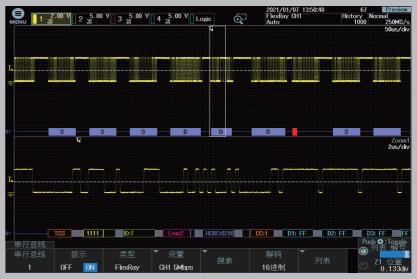
7、负载段长度(7位):标注一帧中能传送的字数;

8、头部 CRC (11位):用于检测传输中的错误;

9、周期计数(6位):每一通信开始,所有节点的周期计数器增1;

B 负载段是用于传送数据的部分,FlexRay 有效负载段包含 0~254 个字节数据。对于动态帧,有效负载段的前两个字节通常用作信息 ID,接受节点根据接受的 ID 来判断是否为需要的数据帧

对于静态帧,有效负载段的前13个字节为网络管理向量(NM),用于网络管理。

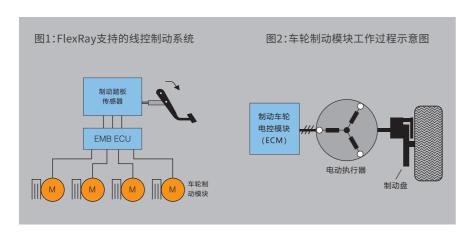

C 尾段只含有24位的校验域,包含了由头段与有效负载段计算得出的CRC校验码。计算CRC时,根据网络传输顺序将从保留位到负载段最后一位的数据放入CRC生成器进行计算。

横河YOKOGAWA示波器在FlexRay总线测试中的优势

横河YOKOGAWA DLM系列示波器进行FlexRay协议解码特点:

- FlexRay总线自动设置触发,快速检测和显示解码数据;
- 实时硬件解码;
- 支持多种触发模式设置;
- 独立的双缩放窗口,用于显示模拟波形和FlexRay总线波形;
- 深度内存最高可达500MPt,实现长时间的总线数据采集,可分析最多达5000帧;
- 缩放搜索功能可查找指定的数据或错误帧;
- 可将解码后的数据以CSV文件格式存储到PC或内部存储器;
- 适用FlexRay协议2.1版;

横河DLM3054示波器FlexRay总线解码图



FlexRay总线在线控制动系统中的应用

高级底盘控制是FlexRay推动新技术在汽车设计中的最好应用。虽然防抱死制动系统(ABS)在大量车辆上得到普及,但是车辆稳定性控制仍然是一个复杂、费用高昂的难题。基于FlexRay网络控制的线控制动技术的出现,车辆稳定性控制的主要组件将向更轻、更快、更简单、效率更高的方向发展,从而实现高级车辆的稳定性控制。

线控制动技术(亦称电子机械制动—EMB)可以消除制动液和液压管路的困扰。单独的高性能电机在每个车轮上产生制动力,制动由ECU控制,并由电子踏板模块发出的信号执行。F1exRay提供通信协议,支持整个系统的高速信息传送,F1exRay的容错功能保证了线控制动系统的绝对可靠性。

如图1所示,FlexRay支持的线控系统包括用作ECU部件的车辆控制节点、每个车轮提供的单独 节点和一个制动踏板节点。系统包含大量传感器、电动执行器、电控模块 (ECM) 和减速器装置, 制动车轮节点属于该系统。从根本上说,制动时电子信息便从踏板节点发送到ECU, ECU再将信 息转载到车轮节点ECM, ECM的主要功能是接收制动踏板信号,处理并提供适当的电压向量,以 便电动执行器能够完成必要的扭矩响应(如图2)。

电动执行器将电能转换成机械能,通过减速器装置传输到制动器外壳和制动垫块上,然后它们作为一个整体将制动力施加到制动盘上。FlexRay的高带宽功能可以快速传输大量极为详尽的信息,从而使机械反应变得非常迅速、准确。由于每个车轮节点都是FlexRay网络的独立系统,每个车轮可以在不同时间间隔提供不同的制动压力,从而在不同制动情况下提供即时的稳定性控制。此外,使用综合感应技术将其他信息(如重量分配、乘客定位、胎压偏差、路面状况等)装载到线控制动上,线控驾驶系统将提供空前的车辆稳定控制级别。

(注:该应用文章参考武汉理工大学学报信息与管理工程版"车载网络FlexRay及其在线控制动系统中的应用",文章编号:1007-144X(2007)01-0030-03)

横河DLM3054示波器FlexRay解析结果列表

横河测量技术(上海)有限公司

上海市长宁区天山西路799号603室

电话: 021-62396363

技术支持与服务热线: 4008200372

